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Previous work published at AIAA meeting in Reno 2003, and to be published in AIAA Journal
of aircraft (FOM=Figure of Merit).

Motivation?

Pre-production F/A-18E er;: %Eweﬁ
— Exhibited “wing drop” in flight test '
“wing drop™ is an-uncommanded lateral motion
“abrupt wing stall” 15 an acrodynamic characteristic, and can cause
wing drop
— Numerous flight tests resulting in a production fix
Revised flight control laws and porous wing fold fairmg
— A comprehensive program was created to beable to predict these
phenomenon with wind tunnels and CFD
Free-to-roll wind tunnel test method
FOM'’s for steady and unsteady (non-moving) CFD
Current work: Progress CFD to calculations of
damping derivatives and free-to-roll for this flow by
application to pre-production F/A-18E
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For DES, RANS is responsible for predicting boundary layer growth and separation. LES is
responsible for predicting the geometry dependant turbulent flow features. Grid adaptation done
using NASA Langley’s RefineMesh program. Adaptation on time average of vorticity

_~Previous work (AIAA 03-0594)

Goal was to use CFD to Iso of vorticity, colored by pressure, a=9"
predict the unsteady

shock oscillations seen in

the experiments.

RANS models failed to

give unsteady results

Detached-Eddy
Simulation turbulence
model

Hybrid RANS/LES

RANS in boundary

layer

LES outside of

boundary layer
Solution based grid
adaption
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DES results are time-averaged coefficients. Left axis removed to protect proprietary data.

_Previous work (AIAA 03-0594)

10/10/5 flap set with no
tails

SST predicted early lift
curve break

DES showed an improved
lift curve break (but on a
grid finer than the current
grid)

Motivates inclusion of
DES in the current project,
along with RANS
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These DES projects represent a cross section of those done over the past few years using Cobalt.

Delta wing vortex breakdown on a delta wing and the F-18C done by Major Scott Morton of the
USAF Academy (Scott.morton@usafa.af.mil).

2-D forebody geometry by Kyle Squires (squires@asu.edu).

Prescribed spin of the F-15E by James Forsythe.

Sample DES Applications
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Prisms created using “Blacksmith” to recombine the tets in the boundary layer into prisms.
Blacksmith is a Cobalt grid utility.

Grid

Grid mirrored about symmetry
plane

Grid provided by Paresh Parikh
6/8/4 flap set

8.4x10° cells for both sides of
aircraft

Adaption performed

on a 9° time-averaged

DES solution under

previous work

Prisms in boundary layer
Average y" < 0.7
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The following are non-moving cases — but can be unsteady (for DES)

Static Cases
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CPU hours based on a Compaq ES45. Timestep for DES non-dimensionalized by chord and

freestream velocity.

Solution Procedure

Menter’s SST RANS model
— Convergence monitored by observing forces and moments.
Rolling moment was generally the most sensitive and last
to converge.
. 4000 iterations

1 Newton sub-iteration
CFL of 1x10°
2000 cpu hours per run.

Spalart Allmaras based DES model

— Unsteady flow simulation
16000 iterations
3 Newton sub-iterations
At*=0.01
8x the cost of the steady RANS simulations
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Model was set to a given pitch angle (theta), then rolled about the longitudinal axis (phi). This
resulted in a decrease of alpha, and an increase in beta as phi increased. The CFD was
performed at the given alphas and betas, which were corrected in the wind tunnel data for wall
effects.

Test Matrix

ALPHA BETA PHI THETA
= e .11 -0.14) -0.13 .01
Conditions chosen to 703 086 987 697

6.32| 2.73/29.75| 674
match NASA Langley 403 asoleoTal €14

wind tunnel test 565 240
ALPHA BETA PHI THETA

Mach=0.9 850 035 384 840
B 812 104 982 808

REC=3.9K106 7.58 3.-1224229.53 8.18

- . ALPHA BETA PHI THETA
! o o
Flow through engines L el B L

Sting not included in —
gl‘ld ALPHA BETA PHI THETA
1017 012/ -002 10.06

10.056) 138 979 1003

906 4.23/29.49 9.86

h 69 7545953 9. 26
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Left axis not labeled to protect proprietary data

Nefmal force for near-zero sideslip

Normal force vs. angle of attack for zero roll
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Pitc/\‘%g moment for near-zero sideslip

Pitching Moment vs. angle of attack

6 ]
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Note reversal of rolling moment for phi=30 using SST.

Run 247 (6=7°)

Rolling Moment
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Yawing moment well predicted — as with all cases.

Run 247 (6=7°)

Yawing Moment
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Side force well predicted — as with all cases.

Side Force
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Shock retreating off trailing edge of leading edge flap.

*'-*BE& Run 247 (6=7°), ¢=0°

[sosurface of vorticity, colored by pressure

Iteration:
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DES isosurface looks like separation is at trailing of leading edge flap. But it moves back from
there unsteadily. This leads to the blue low pressure in the separation bubble (since it is not
always separated).

[sosurface of u=0, surface colored by pressure

" Run 247 (6=7°), ¢=0°
DES
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) [sosurface of u=0, surface colored by pressure
" Run 247 (6=7°), $=10°
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The separation moving forward on the right wing is the cause for the roll moment reversal.

[sosurface of u=0, surface colored by pressure

" Run 247 (6=7°), $=30°
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At this high phi, the alpha is reduced so much that the flow remains attached until the trailing
edge of the wing.

[sosurface of u=0, surface colored by pressure

47 (0=T7°), $=60°
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Note asymmetries in wind tunnel data. Decrease in lateral stability derivative picked up with
DES.

Run 240 (0=8.5°)

Rolling Moment
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Good agreement for yawing moment, as with all cases — this is likely due to the attached flow at
the tail, which is easily predicted.

Run 240 (0=8.5°)

Yawing Momeant
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Good agreement for side force, as with all cases — this is likely due to the attached flow at the
tail, which is easily predicted.

Run 240 (0=8.5°)

Side Force
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Separation is making it onto the leading edge of the leading edge flap.

,D%S, Run 240 (0=8.5°), g=4°

[sosurface of vorticity, colored by pressure
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) [sosurface of u=0, surface colored by pressure
" Run 240 (0=8.5°), ¢=4°
DES
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) [sosurface of u=0, surface colored by pressure
_~Run 240 (6=8.5°), $=10°
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) [sosurface of u=0, surface colored by pressure
_“Run 240 (6=8.5°), $=30°
SST
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Large asymmetries in wind tunnel data. Around this angle there was difficulty in testing, since
model dynamics became significant.

Run 242 (6=9°)

Ralling Moment

460



Good agreement for yawing moment, as with all cases.

Run 242 (6=9°)

Yawing Moment
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Good agreement for side force, as with all cases.

Run 242 (6=9°)

Side Force
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[sosurface of u=0, surface colored by pressure

__“ Run 242 (6=9°), $=10°
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) [sosurface of u=0, surface colored by pressure
_“ Run 242 (6=9°), $=30°
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Rolling moment offset predicted by DES — is the sample size large enough?
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Looks like enough samples have been taken to well define rolling moment. However more
might change the time-averaged rolling moment some.

DES convergence history
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Yawing Moment

|——Run 244
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Run 244 (6=10°)

Side Force

| ——Run 224
= 53T
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Unsteadiness now is due to separation moving from leading to trailing edge of the leading edge
flap.

,E)ES, Run 244 (6=10°), ¢=0°

[sosurface of vorticity, colored by pressure

Ileralion: 8000
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) [sosurface of u=0, surface colored by pressure
__“ Run 244 (6=10°), ¢=0°
DES
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) [sosurface of u=0, surface colored by pressure
__“Run 244 (6=10°), $=10°

471



) [sosurface of u=0, surface colored by pressure
_“Run 244 (6=10°), $=30°
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) [sosurface of u=0, surface colored by pressure
_“Run 244 (6=10°), $=60°
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Oscillating Cases
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ALE = Arbitrary Eulerian/Lagrangian.

Solution Procedure

Time-accurate with ALE formulation for grid motion
— 5 Newton sub-iteration (for accurate grid motion)
— At*=0.02 (ran several timesteps to demonstrate timestep
convergence)
Prescribed sinusoidal oscillation around longitudinal
axis
tan-1(f*)=1°, f*=0.0174
2,600 iterations per cycle
4,000 cpu-hours per cycle
+/-5° oscillation
Menter’s SST RANS model
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Linear and well behaved. Stable roll damping.

)F’%Iling moment vs. Roll rate

00l 0 0.01
dg/dt*bi2U_
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Separation at trailing edge — flow well behaved.

lteration. 3400

1
450G . o 5200 &000
Iteration
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Large rolling moment offset. Several cycles run with varied timestep, but offset remained.

olling moment vs. Roll rate

-0.01

A —
dy/dt*b/2U_

478



Offset due to differences in separation location. Hysterisis?

Iteratiaon: 4400
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Iteration
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Slightly chaotic behavior, but linear and stable roll damping.

olling moment vs. Roll rate

-
di/dt*b/2U_

-0.01
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Positive roll damping. Note lowered slope — due to lower lift curve slope once shock moves
forward on the wing.

olling moment vs. Roll rate
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olling moment vs. Roll rate

-0.01

. —
dy/dt*b/2U_
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olling moment vs. Roll rate

-0.01

. —
dy/dt*b/2U_
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olling Moment vs. Roll angle
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Study still underway — not enough samples. Looking at dependence of roll damping on roll rate.

Roll rate study, 6=7°

atan(f )=0.5"
atan(f )=1°
atan(f )=2"

0
dg/dt*bi2U_
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Conclusions

RANS and DES applied to predict static stability
derivatives in roll in AWS regime
— DES showed better lift and moment predictions
— Yawing moments and side force well predicted by both methods
— Rolling moment more sensitive (both for CFD and wind tunnel)
Prescribed rolls used to look at roll damping (RANS only)
— All cases were stable in roll, but in AW S regime had more
chaotic behavior. For one angle there was a significant rolling
moment ottest
— Comparison to experiments still ongoing
Continuing work
— DES of prescribed rolls
— More iterations on varying roll rate
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